Identification of a Novel Brain-Penetrant EGFR-Sparing ErbB2 Inhibitor with Activity Against Oncogenic ErbB2 Mutations

Mark J Chicarelli, Tanna Bettendorf, Abiezer Blandon, Karyn Bouhana, Richard K. Brizendine, LouAnn Cable, Michelle Crow, Brad Fell, John Fischer, Jennifer Fulton, Anna Guarnieri, Madison Hillman, Ravi Jalluri, Amber Johnson, Hailey Knox, Keith A. Koch, Vijay Kumar, Cori A. Malinky, Rob Rieger, John Robinson, Lee M Stunkard, Francis Sullivan, John I Trujillo, Roy Turton, Shannon Winski, and Yeyun Zhou; Cogent Biosciences, Inc., Boulder, CO and Waltham, MA

	Cogent ErbB2 Inhibitor Opportunity Target Product Profile
EGFR Sparing	Avoids EGFR related toxicities
Potent on Mutations	Retains high potency against prevalent ErbB2 mutations
Covalent	Provides a prolonged pharmacodynamic effect for maximum efficacy
Brain Penetrant	Provides coverage in the CNS to treat brain metastases
Selective	Selective for ErbB2 across the kinome, receptors, channels, and hERG
Combinable	Low DDI risk based on in vitro data, potential to combine with Enhertu and other agents

Background

Figure 1. HER Receptor Signaling Pathway

- ErbB2 is a receptor tyrosine kinase that belongs to a family of four receptors EGFR, ErbB2, ErbB3, and ErbB4, also known as HER1, 2, 3,
- Receptor activation induces rapid dimerization with a marked preference for ErbB2 as a partner²
- Phosphorylation of the ErbB2 kinase domain activates PI3K/Akt and the Ras/Raf pathways which regulate cell growth, survival and differentiation³

Figure 2. Prevalence of Oncogenic Mutations of ErbB2^{4,5}

	Total ERBB2	2 Mutations	$\left \right $	S310Y/F	R678Q/W	L755S/P/A/F/C/ Ins del	D769H/G/N	ex20 ins/del	V777
ers	Bladder Cancer	12,344 (15%)		3,035	246	458	405		211
Canc	Breast Cancer	11,912 (4%)		694	57	2,233	733	1,033	_1
ated	NSCLC	5,790 (3%)		357	41	214	31	2098	48
Mut	Colorectal Cancer	4,279 (4%)		285	626	155	77	6	226
(BB2	Endometrial Cancer	3,972 (6%)		132	372	156	84		24
p ER	Melanoma	3,904 (4%)		191		55	14		55
Ĕ		5,100 ,0,00 ,5,00 20,00		~ 100 Job 300 "00	~ 1,00° 2,00° 3,00° 1,00°	~ 100 Jon 300 "00	~ 100 Jon 300 "00	~ 1,000 2,000 3,000 1,000	, 1 ₀₀₀
					Estima	ted Patients per year	in U.S. (New Cases)		
				e e e e e e e e e e e e e e e e e e e			A A A A A A A A A A A A A A A A A A A		
ERE	3B2 📖	Recep L F	l urin-	-Like Recep L	GF Recep		Kinase Dom	nain	

- ErbB2 drives breast cancer growth through amplification or through genetic mutations leading to constitutive activation
- ErbB2 is mutated in roughly 4% of breast cancer patients with L755S being the most common alteration⁵ • Sequencing of tumors that have progressed post front-line breast cancer treatments have revealed ErbB2 mutations as
- mechanisms of resistance in metastatic breast cancer
- These mutations occur primarily in the furin-like and kinase domains

REFERENCES: 1. Arteaga et al. 2012. Nat Rev Clin Oncol. 9:16-32. 2. Tai et al. 2010. J Control Release. 146(3):264–275. 3. Yarden and Pines. 2012. Nat Rev Cancer. 12:553–563. 4. American Cancer Society. Cancer Facts & Figures 2023. Atlanta: American Cancer Society; 2023. 5. The AACR Project GENIE Consortium. AACR Project GENIE: Powering Precision Medicine Through An International Consortium, Cancer Discovery 2017. 6. Monette Aujay et al. AACR 2023 Poster # 4019. 7. Kristin L. Andrews et al EORTC 2022, Poster 212.

Results

Table 1. CGT4255 Shows Low nM Cellular Activity Against Oncogenic ErbB2 Mutations

		ErbB2 Ce	ellular IC ₅₀ Inhibition	of pErbB2	
	ErbB2 WT	L755S	YVMA	S310F	V842I
CGT4255	8 nM	9 nM	3 nM	7 nM	15 nM

- Mechanistic cell assay in engineered lines measuring inhibition of pErbB2
- CGT4255 shows similar low nM potency across WT and mutant cell lines

Figure 3. CGT4255 is Selective Across the Kinome and 100X Selective Over EGFR

- CGT4255 was profiled at 10x the enzyme IC₅₀ for WT ErbB2 against a panel of 371 kinases, ErbB2 was the only kinase that showed >30% target inhibition
- Mechanistic cellular assays show CGT4255 is 100-fold selective for ErbB2 YVMA over WT-EGFR

Table 2. CGT4255 has Long Half-Life in Whole Blood and Human Liver Cytosol **Stability Assays**

		Mouse	Rat	Dog	Cyno	Human
Whole Blood Stability, t1/2 min		637	903	1120	669	1089
	Po	oziotinib	Pyrotinib	ELVN	-002 ⁶	CGT4255
Human Liver Cytosol Stability, t1/2 min		269	56	1	01	577

- CGT4255 shows greater than 600 min half-life across species in the whole blood stability assay, highlighting 18h half-life in human whole blood
- Compared to other covalent ErbB2i, CGT4255 has superior stability in a human liver cytosol stability assay

Figure 4. CGT4255 Shows Dose Escalating Mouse PK, With Best-in-Class Brain Exposure

For questions, please contact mark.chicarelli@cogentbio.com

DISCLOSURES: All authors are employees of Cogent Biosciences ACKNOWLEDGEMENTS: Zhang Peichuan, Qiaoqiao Xu, Huijuan Lv, Ning Han, and the Enzymology & *In Vitro* Novel Drug Screening Team, WuXi Biology. Dr. Binglin Wang, Dr. Le Chang, Dr. Ke Zhang and their WuXi AppTec Chemistry team.

Adjusted for FBS-binding

K @ 3 mg/kg IV	Result
CL (mL/min/kg)	3.5
VDss (L/kg)	3.9
@ 100 mg/kg PO	Result
t1/2 (hr)	6.8
t1/2 (hr) F (%)	6.8 73
t1/2 (hr) F (%) Kpuu @1h	6.8 73 0.80

• Dose escalating oral exposure in mice

• Low clearance and high oral bioavailability seen at all doses • CGT4255 Kpuu was 0.80 at 100 mg/kg at 1h in mice

Figure 5. CGT4255 Shows Robust Inhibition of pErbB2 in ErbB2 Mutant PD Models NIH3T3 ErbB2-YVMA NIH3T3 ErbB2 –L755S CGT4255 30 mg/kg

- Inhibition >90% seen up to 10 hr at 10 mg/kg PO in the YVMA model

L755S TGI Study

- growth inhibition mouse model

Conclusions

- CGT4255 Advanced Lead
 - Low nM potency against ErbB2 WT and oncogenic ErbB2 mutations 100-fold selectivity over WT-EGFR, highly selective across the kinome, Cyps, receptors, channels, and hERG

 - Exceptional stability in human whole blood and liver cytosol fractions
 - Dose ascending PK in mice with low clearance and high oral bioavailability
 - Best-in class 80% brain penetrance at 100 mg/kg in mice
- Maximum inhibition of pErbB2 observed at a 30 mg/kg PO dose in both NIH/3T3 ErbB2-YVMA and ErbB2-L755S tumor models
- Complete regressions were seen at 100 mg/kg PO BID in the NIH3T3 ErbB2-L755S TGI model and was well tolerated

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from SABCS[®] and the author of this poster

• CGT4255 shows dose dependent inhibition of pErbB2 in NIH3T3 YVMA and L755S PD models

• In the L755S model, p-ErbB2 inhibition of >90% was observed for 24hr at 30 mg/kg PO

Figure 6. CGT4255 Shows Regressions and is Well-Tolerated in an NIH3T3 ErbB2 –

• CGT4255 was dosed PO BID at 10, 30, or 100 mg/kg for 13 days in an engineered NIH3T3 ErbB2-755S tumor

• CGT4255 showed dose responsive TGI with full regressions observed at the 100 mg/kg dose • CGT4255 was well tolerated at all doses with no body weight loss or deaths observed in any treatment group