

Pre-Clinical Characterization of a Novel EGFR Sparing ErbB2 Inhibitor with Activity Against Oncogenic ErbB2 Mutations

Jennifer Fulton¹, Karyn Bouhana¹, Richard K. Brizendine¹, LouAnn Cable¹, Michelle Crow¹, Brad Fell¹, John Fischer¹, Anna Guarnieri¹, Ravi Jalluri¹, Hailey Knox¹, Keith A. Koch¹, Rob Rieger¹, John Robinson¹, Lee M Stunkard¹, Francis Sullivan¹, Roy Turton¹, Shannon Winski¹, Yeyun Zhou¹ ¹Cogent Biosciences, Inc., Boulder, CO and Waltham, MA Abstract Presentation Number: 1440

Background

- ErbB2 is a receptor tyrosine kinase that belongs to a family of four receptors EGFR, ErbB2, ErbB3, and ErbB4, also known as HER1, 2, 3, 4.¹
- Receptor activation induces rapid dimerization with a marked preference for ErbB2 as a partner.²
- Phosphorylation of the ErbB2 kinase domain activates PI3K/Akt and the Ras/Raf pathways which regulate cell growth, survival and differentiation.³

Figure 1. HER Receptor Signaling Pathway

Table 1. ErbB2 Mutational Frequency in Solid Tumors^{4, 5}

Cancer Type	Yearly US Patients	ErbB2 Mutational Frequency	Patients With ErbB2 Mutations	Commonly Occurring Mutation
Bladder Cancer	83,000	11.6%	9,600	S310F/Y
Endometrial Cancer	66,000	5.9%	3,900	V842I
Colorectal Carcinoma	153,000	4.8%	7,340	V842I
Melanoma	98,000	4.6%	4,510	S310F
Breast	284,000	3.2%	9,000	L755S
Non-Small Cell Lung Cancer	195,000	3.5%	6,800	YVMA ins

- ErbB2 amplifications and mutations are mutually exclusive in 80-90% of cases and represent independent drivers of human cancer pathogenesis
- Activating mutations in the ErbB2 gene demonstrate a tumorigenic role in multiple cancers similar to that of ErbB2 amplification
- Emerging mutations result in both acquired and cross resistance
- The non-selective dual EGFR/ErbB2 inhibitors are active against ErbB2 point mutations, however, inhibition of EGFR leads to dose limiting toxicities that include severe rash, diarrhea and mucositis
- Tucatinib, the first-generation selective EGFR sparing ErbB2 inhibitor, does not reach clinical plasma concentrations to cover the IC₉₀ efficacious concentration for prevalent ErbB2 mutations

Goal

Identify a potent, brain penetrant, mutant active, WT-EGFR sparing, ErbB2 inhibitor for the treatment of patients with ErbB2 alterations and emerging ErbB2 resistance mutations.

Results

Figure 2. Co-Crystal Structure of ErbB2(V842I)-CGT1786 Enabled Structure-Based Drug Design

- 2.3 Å Resolution crystal structure of mutant ErbB2 V842I with the ErbB2 inhibitor CGT1786 bound.
- Covalent bond from inhibitor to Cys805 is highlighted, the remainder of the compound is masked as an orange surface.
- Proprietary crystal structures of ErbB2 were used to optimize inhibitors for potency and selectivity.

00	120·
2 P	100·
ErbE	80
В	60·
lqsc	40·
Pho	20.
	٥.

- රි 120-

Table 2. EGFR Sparing ErbB2 Inhibitors with Cellular Activity Against Oncogenic Mutations

Free Fraction Adju	isted pErbB2 Inh	ibition IC ₅₀ (nM) ir	n Engineered Cell	Lines
Target	Tucatinib	CGT1786	CGT2724	CGT4069
WT-ErbB2	6	8	4	2
S310F (Urothelial)	8	6	4	2
V842I (Uterine)	24	14	6	3
L755S (Breast)	53	12	4	3
YVMA (Breast)	28	2	2	1
WT-EGFR/YVMA Selectivity	46x	220x	52x	>1350x
Chemotype		А	A	В

CGT1786 has low nM potency on WT-ErbB2 and prevalent mutations including L755S and YVMA

• CGT1786 is 220-fold selective for ErbB2 YVMA over WT-EGFR.

• Next generation compounds CGT2724 and CGT4069, optimized from CGT1786, showed similar selectivity and activity profiles and significantly improved free brain to plasma ratios (Table 3).

• CGT compounds are more potent on ErbB2 mutations and more selective over WT-EGFR than tucatinib.

Figure 3. CGT1786 Demonstrated Robust Inhibition of pErbB2 Levels and Superior Tumor Growth Inhibition Compared to Tucatinib in 3T3 L755S Models

• Tucatinib showed 85% inhibition of pErbB2 at 2 hrs with plasma concentrations 6x higher than clinical Cmax⁶ and no inhibition at 10 hrs.

• CGT1786 showed improved inhibition of pErbB2 vs. tucatinib over the complete duration of the study.

At 1 hr tucatinib showed 90% inhibition of pErbB2 at plasma concentrations that are 3x above clinical Cmax, with significant loss of inhibition at 10 and 24 hrs.

CGT1786 showed >90% inhibition at 1 hr and has a prolonged pharmacodynamic effect with >80% inhibition out to 24 hrs.

- Tucatinib had minimal TGI (42%) at 30 mg/kg PO BID.
- CGT1786 dosed PO BID at 30 mg/kg resulted in >90% TGI in a 13-day study.

Figure 5. CGT1786 Is Brain Penetrant with **CNS-YVMA** Coverage in Mice

- CGT1786 dosed at 30 mg/kg PO had 2 hr YVMA coverage in the brain.
- Free brain to plasma ratio for CGT1786 was 22%.

- system
- CGT1786 showed dose response characteristics between the 30 and 100 mg/kg doses.

Table 3. Focused Optimization: Improving Brain Penetrance and Whole Blood Stability

Assay	CGT1786	CGT2724	CGT4069	
Free Brain to Plasma Ratio (1hr)	22%	36%	40%	
Human Whole Blood t _{1/2}	612 min	318 min	1410 min	

- - >200-Fold selectivity for WT-EGFR , potent on prevalent point mutations, and the exon 20 insertion YVMA mutation
- Robust PK/PD in a L755S model led to superior tumor growth inhibition compared to tucatinib • Prolonged inhibition of pErbB2 observed in a 3T3 YVMA mouse model
- After dosing at 30 mg/kg PO, CGT1786 gave 22% free brain to plasma ratio and coverage of YVMA IC_{50} in the brain

REFERENCES: 1. Arteaga et al. 2012. Nat Rev Clin Oncol. 9:16-32. 2. Tai et al. 2010. J Control Release. 146(3):264–275. 3. Yarden and Pines. 2012. Nat Rev Cancer. 12:553–563. 4. American Cancer Society. Cancer Facts & Figures 2021. Atlanta: American Cancer Society; 2021. 5. The AACR Project GENIE Consortium. AACR Project GENIE: Powering Precision Medicine Through An International Consortium, Cancer Discovery 2017. 6. Filho et al. 2020. Ann Oncol. 31(9):1231-1239. 7. Fell et al. 2020. J. Med. Chem. 63, 6679-6693.

Figure 6. CGT1786 Showed Superior Efficacy Compared to Tucatinib in a BT474/Luciferase (WT-ErbB2) Intracranial Model

• CGT1786, dosed PO BID at 30 and 100 mg/kg, was compared to tucatinib, dosed PO BID at 20 mg/kg, in an intracranial BT474 WT-ErbB2 model tagged with luciferase. • Dosing was initiated on day 7 post-implantation and continued until day 33. • Tumor size is approximated as flux (photons/sec) normalized to vehicle control using the IVIS imaging

• Tucatinib showed insignificant reduction in normalized flux .

• Significant reduction in tumor flux was observed with both doses.

• CGT1786 exhibited a 22% brain to plasma ratio following single dose PK assessment in mice at the 1 hr timepoint (Figure 5).

Increasing CNS exposure: Recent analogs, including CGT2724 and CGT4069, have measured brain to plasma ratios in mice, dosed PO at 30 mg/kg, of 36% and 40% respectively (1-hour time point). • Structural changes to CGT1786 have led to next generation inhibitors with improved whole blood stability in the range of approved covalent drugs.⁷

Conclusions

Co-crystal structures of ErbB2(V842I) with CGT1786 enabled the design of potent selective inhibitors. CGT1786 – early lead compound

- In an intracranial model, CGT1786 demonstrated dose response characteristics with significant reduction in tumor flux compared to tucatinib
- Next Gen Cogent compounds, such as CGT2724 and CGT4069, maintain mutant potency, demonstrate superior brain penetrance, and show whole blood stability in the range of approved drugs.
- Work continues to identify a clinical candidate

