A Phase 2 Study of Bezuclastinib (CGT9486), A Novel, Highly Selective, Potent KIT D816V Inhibitor, in Adults with Advanced Systemic Mastocytosis (Apex): Methods, Baseline Data, and Early Insights

Daniel J. DeAngelo¹, Vinod Pullarkat², Miguel Piris-Villaespesa³, Tracy I. George^{4, 5}, Jay L. Patel^{4, 5}, Celalettin Ustun⁶, Prithviraj Bose⁷, Mark L. Heaney⁸, Amanda Pilla⁹, Ben Exter⁹, Zamaneh Mikhak⁹, Hina A. Jolin⁹, Tsewang Tashi⁵ ¹Dana-Farber Cancer Institute, Boston, ²City of Hope, Duarte, ³Hospital Universitario Ramón y Cajal, Madrid, Spain, ⁴ARUP Laboratories, ⁵Huntsman Cancer Institute, University of Utah, Salt Lake City, ⁶Rush University Cancer Center, Chicago, ⁷The University of Texas MD Anderson Cancer Center, Houston, ⁸Columbia University Medical Center, New York, ⁹Cogent Biosciences, Cambridge, United States of America

Advanced Systemic Mastocytosis (AdvSM)

Disease Overview: Aggressive and life-threatening form of systemic mastocytosis (SM) that is primarily driven by mutations in KIT D816V and leads to uncontrolled proliferation of mast cells (MC)¹⁻⁵

- Subtypes: aggressive SM (ASM); SM with associated hematologic neoplasm (SM-AHN); mast cell leukemia (MCL)⁶
- Based on subtype, the median overall survival ranges from <6 months to 3-4 years⁴⁻⁷
- **Clinicopathologic Criteria:** Defined by presence of clinical and pathological findings known as C-findings • C-findings: organ damage from MC infiltration e.g., cytopenias, hepatomegaly with liver dysfunction, ascites, splenomegaly with cytopenias, malabsorption with hypoalbuminemia, large osteolytic lesions and/or pathologic fractures^{5,8,9}
- **Unmet Need:** Significant unmet need remains given dose-limiting toxicity profiles of the limited available therapies • Reported toxicities for marketed therapies: nausea, vomiting, diarrhea, edema, intracranial bleeding, cognitive effects¹⁰⁻¹²

Bezuclastinib: Preclinical Data

- Oral, selective, and potent type I tyrosine kinase inhibitor (TKI) with potent activity against KIT D816V, an activation loop mutation
- Preclinically, highly active with specificity for mutations in KIT exons 9, 11, 17, and 18, including D816V
- Spares closely related kinases (*Table 1*), has minimal brain penetration, and favorable PK properties¹³
- Inhibition of closely related kinases have been linked to off-target toxicities, such as bleeding, edema and pleural effusions^{14,15}

Table 1: Kinase Inhibition Profile of Clinical Stage and Approved KIT D816V Agents; Cell IC₅₀ (nM)

Compound	<i>KIT</i> V560G/ D816V (HMC 1.2)	PDGFRα	PDGFRβ	CSF1R	FLT3	KDR
Bezuclastinib	14	>10,000	>10,000	>10,000	>1000	>1000
Avapritinib	13	53	10	249	305	>1000
BLU-263	6	21	6	161	345	>1000

Apex: Phase 2 Bezuclastinib Study Overview

 Phase 2, multi-center, open-label, 2-part clinical study to evaluate the safety, efficacy, PK, and PD of bezuclastinib in patients with AdvSM (NCT04996875; *Fig. 1; Table 2*)

*Interim analysis (IA) will be performed after ~28 patients have completed at least 2 cycles of bezuclastinib

- Oral bezuclastinib administered once (QD) or twice (BID) daily
- Clinical activity assessed per mIWG response criteria by the Central Review Response Committee (CRRC)
- Optimal dose for Part 2 selected from Part 1 data

Table 2: Key Eligibility Criteria and Study Endpoints

Key Eligibility Criteria

- ASM, SM-AHN or MCL diagnosis per World Health Organization (WHO) 2016 criteria¹
- Measurable disease according to mIWG eligibility and response criteria for clinical improvement (CI) per central eligibility committee
- Subset of inevaluable patients per mIWG response criteria based on lack of evaluable organ damage per mIWG may be included
- Clinically acceptable local lab results, including platelet count ≥50,000/μL for 2 weeks prior to first dose • Prior treatment with other TKIs (e.g., avapritinib, midostaurin) is permitted
- Eastern Cooperative Oncology Group (ECOG) Performance Status 0-3 is permitted
- Systemic corticosteroids (>10 mg prednisone or equivalent/day) are not permitted

	Primary Objectives	Primary Endpoints
Part 1	Determine the optimal dose of bezuclastinib	 Safety, PK, and PD assessments Changes from baseline in laboratory results and dose modifications Overall response rate (ORR) based on the mIWG response criteria
Part 2	Determine the efficacy of bezuclastinib at the selected optimal dose	ORR (CR, CR with incomplete hematologic recovery [CRh], PR, and Cl) per mIWG as assessed by a CRRC

Apex, Phase 2 Bezuclastinib: Baseline Data + Early Insights

Baseline Characteristics: 11 mIWG-evaluable patients enrolled as of 24-May-2022; median age: 70 years; range: 48-87 (*Table 3*)

Table 3: Baseline Characteristics

Baseline Characteristics	50mg BID (N=3)	100mg BID (N=3)	200mg BID (N=3)	400mg Ql (N=2)	
Male, n (%)	2 (67)	3 (100)	2 (67)	2 (100)	
ECOG PS 0-1	2 (67)	3 (100)	3 (100)	1 (50)	
AdvSM Subtype per Central Eligibility Review, n (%)					
ASM	1 (33)	0 (0)	0 (0)	1 (50)	
SM-AHN	2 (67)	2 (67)	3 (100)	1 (50)	
MCL	0 (0)	1 (33)	0 (0)	0 (0)	
KIT D816V in Whole Blood, Positive, n (%)	3 (100)	3 (100)	2 (67)	2 (100)	
Treatment Naive, n (%)	3 (100)	2 (67)	2 (67)	2 (100)	
Prior Avapritinib, n (%)	0 (0)	1 (33)	1 (33)	0 (0)	
Prior Midostaurin, n (%)	0 (0)	1 (33)	1 (33)	0 (0)	
Median Bone Marrow MC Burden, % (range)	60 (30-70)	70 (30-80)	10 (7-30)	55 (30-80)	

Pharmacokinetics:

- Dose dependent increase in systemic exposure observed after the first dose
- Steady state exposure to bezuclastinib remained above IC₅₀ for inhibition of KIT D816V across all doses, consistent with reduction in serum tryptase

187

(169-605)

253

(144-1578)

Safety and Tolerability:

Median Serum Tryptase, ng/mL (range)

- Majority of treatment emergent adverse events (TEAE) were of low-grade with one serious adverse event (SAE) and no Grade 4 events (*Table 4*)
- No periorbital/peripheral edema, cognitive effects or intracranial bleeding reported
- No treatment discontinuations; all patients remain on study
- Two patients dose reduced due to AEs; one re-escalated to randomized dose

Table 4: TEAE Occurring in >1 Patient and All Grade 3 Events

Preferred Term, n (%)	ТЕАЕ				
(N=11)	Grade 1/2	Grade 3	Grade 4		
Anemia	2 (18)	1 (9)	0 (0)		
Neutropenia	1 (9)	1 (9)	0 (0)		
Thrombocytopenia	2 (18)	0 (0)	0 (0)		
Diarrhea‡	0 (0)	1 (9)	0 (0)		
Hypersensitivity ⁺	0 (0)	1 (9)	0 (0)		

vestigator assessed as not related to treatmen † SAE of hypersensitivity (mediator flare); patient continued treatment and remains on study (See: Patient Summary; Case 2)

83

(67.9-111)

301

(232-370)

with minimal residual trilineage hematopoiesis

arranged in paratrabecular aggregates (arrows)

Summar

- Bezuclastinib is a highly potent and selective tyrosine kinase inhibitor that targets the *KIT* D816V mutation, the primary driver of AdvSM • Bezuclastinib was generally well-tolerated across all dose levels

- References: 1. Garcia-Montero AC, et al. Blood. 2006;108(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):70-6; 9. Rossignol J, et al. F1000Res. 2019;2(3):138-49; 3. Vaes M, et al. Transl Med UniSa. 2014;8:65-74; 1. RYDAPT [US Presc: binnings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):70-6; 9. Rossignol J, et al. F1000Res. 2019;2(3):36-77; 5. Gotlib J. Hematology Am Soc Hematol. 2019;2(4):36-77; 5. Gotlib J. Hematology Am Soc Hematol Educ Program. 2018;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):70-6; 9. Rossignol J, et al. F1000Res. 2019;2(3):36-77; 5. Gotlib J. et al. Transl Med UniSa. 2019;16, 2; 7. Shomali W, Gotlib J. Hematol. 2019;2(3):36-77; 5. Gotlib J. Hematology Am Soc Hematol. 2019;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy Clin Immunol Pract. 2014;2(1):127-36; 8. Jennings S, et al. JAllergy

Summary of Clinical Activity:

- 11/11 patients experienced a >50% reduction in serum tryptase (*Fig. 2, 3*)
- 6/11 patients achieved a serum tryptase level <20 ng/mL
- 8/8 patients with ≥2 cycles of treatment and available Cycle 3, Day 1 (C3D1) data achieved ≥50% reduction in bone marrow MC (Fig. 4) • 6/8 patients achieved complete clearance of MC aggregates by central review
- 8/8 patients with ≥2 cycles of treatment and available C3D1 data demonstrated decreases in KIT D816V variant allele fraction (VAF) by ddPCR (Fig. 5)

Fig. 2: Maximum Percent Change in Serum Tryptase from Baseline

Fig. 3: Time to Serum Tryptase Reduction and Duration on Treatment

Patient Summaries (Treatment Ongoing)

Case 1

Background: Patient with SM-AHN, prior treatment with midostaurin (progression) and avapritinib (toxicity: Grade 3 thrombocytopenia and anemia); baseline labs: serum tryptase 1578 ng/mL, MC burden 80%, C-finding: platelets <75K/μL; randomized to bezuclastinib 100 mg BID Safety: Grade 2 anemia; patient remains on study treatment >2 months without treatment interruption or dose reduction

Clinical Activity: 93% reduction in serum tryptase (>50% by C1D8), 63% reduction in bone marrow MC, and a 63% reduction in KIT D816V VAF

Case 2

Background: Patient with ASM, no prior TKI exposure. Baseline tryptase 370 ng/mL, baseline MC burden 80%, C-finding: spleen >5 cm below left coastal margin; randomized to 400 mg QD (*Fig. 6*)

Safety: Hypersensitivity (mediator flare) on C1D2, dose reduced from 400 mg QD to 200 mg QD without interruption; symptoms resolved within 24 hours; patient remains on study treatment >4 months

Clinical Activity: 94% reduction in serum tryptase (>50% by C1D8), 50% reduction in bone marrow MC, and 72% reduction in KIT D816V VAF

• No reported periorbital/peripheral edema, cognitive effects or intracranial bleeding events, which have been associated with other TKIs

• Hematological events are expected in this patient population with advanced hematologic disease, frequently presenting with baseline cytopenias related to underlying disease and/or prior therapy • Encouraging early signs of clinical activity demonstrated by meaningful reduction in serum tryptase levels as well as reductions in MC burden, and KIT D816V VAF in all evaluable patients • Patients treated with prior KIT inhibitors, including avapritinib, demonstrated similar magnitude reductions across serum tryptase, MC burden, and KIT D816V VAF

